A nanoscale numerical model of calcium silicate hydrate

نویسنده

  • P. C. Fonseca
چکیده

0167-6636/$ see front matter 2011 Elsevier Ltd doi:10.1016/j.mechmat.2011.05.004 ⇑ Corresponding author. Tel:. +1 215 571 3786. E-mail addresses: [email protected], [email protected] Fonseca), [email protected] (H.M. Jennings), jandrade@ drade). 1 Cement chemistry notation: C = CaO, S = SiO2, H This manuscript presents a numerical model of the low-density and high-density calcium– silicate–hydrate (C–S–H) gel phases in cement paste. Generated using an autocatalytic growth algorithm, C–S–H is introduced as an assemblage of discrete granular particles at nanoscale with realistic particle-level properties, such as elastic modulus, friction, and cohesion. Using the discrete element method, nanoindentation simulations are performed on each phase, demonstrating that its mechanical contact properties compare well to the results from nanoindentation experiments in the literature. By creating an additional loosely packed phase of C–S–H and maintaining constant particle-level material properties, the results further show that the indentation modulus, as a function of the volumetric packing fraction of the C–S–H gel phase, compares well to a linear self-consistent scaling relation while the hardness most closely fits a nonlinear self-consistent scaling relation. 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on the Structural Model of Calcium Silicate Hydrate based on Computer Simulation

Calcium Silicate Hydrate (C-S-H) is the main hydration product of Portland cement, it has an important impact on the properties of cement and causes a wide range of study. In recent years, superplasticizer, of which the main component is organic macromolecules, has become an important component in preparation for high performance concrete. Molecular dynamics simulation of cement hydration produ...

متن کامل

A model for reactive porous transport during re-wetting of hardened concrete

A mathematical model is developed that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the imbibed water and the residual calcium silicate compounds residing in the porous concrete matrix. The main hypothesis in this model is that the reaction product – calcium silicate hydrate gel – clogs the pores within the concrete thereby hi...

متن کامل

Order and disorder in calcium-silicate-hydrate.

Despite advances in the characterization and modeling of cement hydrates, the atomic order in Calcium-Silicate-Hydrate (C-S-H), the binding phase of cement, remains an open question. Indeed, in contrast to the former crystalline model, recent molecular models suggest that the nanoscale structure of C-S-H is amorphous. To elucidate this issue, we analyzed the structure of a realistic simulated m...

متن کامل

Experimental Study on TGA, XRD and SEM Analysis of Concrete with Ultra-fine Slag (TECHNICAL NOTE)

The performances of cementitious materials as well as the efficiency of construction are adversely affected at high temperatures. Previous studies have already demonstrated that ultra-fine (alccofine) material accelerates the hydration of cement particles and subsequently improves the mechanical and durability properties of the concrete at normal temperature. Moreover, at higher temperatures th...

متن کامل

Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials

Calcium silicate hydrate (C-S-H) is the binder in concrete, the most used synthetic material in the world. The main weakness of concrete is the lack of elasticity and poor flexural strength considerably limiting its potential, making reinforcing steel constructions necessary. Although the properties of C-S-H could be significantly improved in organic hybrids, the full potential of this approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011